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SUMMARY 

The osc i l la tory  longitudinal s t a b i l i t y  (pitching moment i n  phase 
with displacement) and damping i n  pitch of 1/9-scale models of three 
basic Project Mercury configurations (reentry, ex i t ,  and escape) and 
three modified reentry configurations were measured a t  Mach numbers 
from 0.30 t o  1.20 at angles of attack from Oo t o  14'. 
the osc i l l a to ry  d i rec t iona l  s t a b i l i t y  (yawing moment i n  phase with dis-  
placement) and damping i n  yaw were also made f o r  the basic reentry con- 
figuration. The models were s t ing  mounted and r ig id ly  forced t o  perform 
a 2O constant amplitude, single-degree-of-freedom osc i l la t ion  a t  reduced 
frequencies from 0.0208 t o  0.1849. 

Short t e s t s  of 

Results show t h a t  the reentry configuration generally had marginal 
or negative damping i n  p i tch  and s l igh t  posit ive osc i l l a to ry  longitudinal 
stabil i ty except f o r  i n s t a b i l i t y  a t  
independent of surf ace conditions, reduced frequency, and Reynolds num- 
ber f o r  Reynolds numbers above about 1.10 X lo6. 
reentry body caused detai led changes in  the measured parameters but did 
not s ign i f icant ly  improve the damping o r  osc i l la tory  s t a b i l i t y .  The 
reentry configuration with the antenna and parachute canis ters  removed 
did show t h a t  the afterbody can s ignif icant ly  affect  damping. 
e x i t  configuration had posit ive damping i n  p i tch  but negative osc i l la -  
t o ry  longitudinal s t a b i l i t y  a t -a l l  t e s t  conditions. The basic escape 
configuration had posit ive damping and posi t ive osc i l l a to ry  s t a b i l i t y  
i n  p i tch  except f o r  i n s t a b i l i t y  above a = 10'. A general trend with 
angle of a t tack f o r  a l l  configurations i n  p i tch  was for an increase 
(or decrease) i n  the damping t o  be accompanied by a decrease (or increase) 
i n  the osc i l l a to ry  s t ab i l i t y .  

a = 4O. Results were generally 

Modifications t o  the 

The basic 

* 
Ti t le ,  Unclassified. 
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lTJTRODUCTION - 
c 

The National Aeronautics and Space Administration has conducted a 
broad research program associated with the development of the Project 
Mercury, a manned, nonlift ing,  reentry s a t e l l i t e  vehicle. Reference 1 
discusses some of the wind-tunnel and f l i g h t  phases of t h i s  program. 
One important aspect of the wind-tunnel s tudies  w a s  t o  determine the 
s t a b i l i t y  charac te r i s t ics  of the various configurations of the Project 
Mercury capsule. For example, reference 2 presents the r e su l t s  of a 

the 
s t a t i c  s t a b i l i t y  investigation a t  transonic speeds. This paper presents L 

1 
and yawing osc i l la t ion  derivatives measured i n  phase and out of phase 6 
with displacement f o r  1/9-scale models of several  configurations of the 2 
Mercury capsule obtained i n  the Langley 8-foot transonic pressure tunnel. 1 

r e s u l t s  of an investigation at  transonic speeds of some pitching 

Models of the basic Mercury reentry, ex i t ,  and escape configura- 
t ions  and three modified reentry configurations were tes ted  by using a 
forced-oscil lation technique ( r e f .  3) .  Tests were made a t  Mach numbers 
from 0.30 t o  1.20 at angles of a t tack from 0' t o  14' f o r  various reduced 
frequencies. Reynolds number, based on the capsule heat-shield diameter, 

6 6 w a s  varied from 0.55 X 10 t o  3.50 x 10 . All models were osc i l l a t ed  
i n  pitch o r  yaw a t  an amplitude of approximately 2O about axes passing 
through the fu l l - sca le  center-of-mass posit ions.  

SYMBOLS 

The data presented herein a re  referred t o  the body system of axes 
with moments referred t o  the osc i l l a t ion  axis. The coeff ic ients  and 
symbols used are  defined as follows: 

A cross-sectional area based on d, 0.374 sq f t  

d heat-shield diameter, 0.690 f t  

f frequency of osc i l la t ion ,  cps 

reduced-frequency parameter, v k 

M free-stream Mach number 

angular veloci ty  i n  pitch, radians/sec 

r angular veloci ty  i n  ya,w, radians/sec 
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R Reynolds number based on d 

v free-stream velocity, ft/sec 

U angle of attack 

P angle of sideslip 

P 
lb-sec 2 

ft4 
free-stream mass density of air, 

0 angular velocity, 2nf, raiiians/sec 

c, pi tching-mome nt coefficient , 
Pitching moment about oscillation axis 

$+Ad- 

damping- in-pitch parameter (component of pitching oscil- 
lation moment derivative out of phase with displacement), 
per radian 

cmc, + Cm;, 

2 - k hi oscillatory longitudinal stability parameter (component 
of pitching oscillation moment derivative in phase with 
displacement), per radian 

Yawing moment about oscillation axis Cn yawing-moment coefficient, 
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acn 
cni3 = - a(e) 
Cn, - CnB cos a damping-in-yaw parameter (component of yawing osc i l -  

l a t i on  moment derivative out of phase w i t h  dis- 
placement), per radian 

cos a + k 2 Cn* osc i l la tory  d i rec t iona l  s t a b i l i t y  parameter (com- r ponent of yawing osc i l la t ion  moment derivative i n  
phase with displacement), per radian 

CnP 

A dot used over a symbol indicates a f i r s t  derivative w i t h  respect d 

t o  time. 

MODELS, APPARATUS, AND PROCEDURE 

Mode Is 

Drawings of the 1/9-scale models of the basic Project Mercury 
capsule i n  the reentry, ex i t ,  and escape configurations and the three 
variations of the reentry configuration which were tes ted  are  shown i n  
figure 1. 
during osc i l l a t ion  are apparent i n  f igure 1. 

Slight  modifications necessary t o  provide f o r  s t i ng  clearance 

Test modifications t o  the basic reentry configuration included 
removal of the antenna and parachute canis te rs  ( f i g .  l(d)), addition 
of a 16.20 included-angle, so l id  diverging conical f l a r e  behind the 
heat shield ( f ig .  l ( e ) ) ,  and in s t a l l a t ion  of a l / b inch - th i ck  vented, 
spherical-segment heat shield mounted 0.21 inch forward of the basic 
heat shield by means of s ix  equally spaced mounting bolts and spacers 
on a 6-inch-diameter c i r c l e  and one on the center l i ne  ( f ig .  l(f)). 

J 
-- 

Y 



t 

Y 

L 
1 
6 
2 
1 

!The axis of rotation f o r  forced osc i l la t ion  of the models w a s  
normal t o  the longitudinal center l ine  of the models a t  the proposed 
center-of-mass position of the full-scale capsule. The modified ver- 
sions of the reentry configuration used the same oscil lation-center 
location as the basic reentry configuration. 

5 

Apparatus and Procedure 

Oscil lation apparatus.- The models were mounted on an osc i l la t ion  
balance which was forced t o  perform an essent ia l ly  sinusoidal, single- 
degree-of-freedom motion of constant amplitude. A motor-driven Scotch 
yoke arrangement provided osc i l la tory  motion and allowed control of 
osc i l la t ion  frequencies up t o  21 cycles per second. Strain-gage signals 
of the model angular displacement and of the moment required t o  sustain 
osc i l la t ion  were resolved into orthogonal components so tha t  the moments 
i n  phase and out of phase with the displacement could be determined. 
The in-phase component, when corrected f o r  the mechanical spring constant 
and model iner t ia ,  gave a measure of the osc i l la tory  aerodynamic s tab i l -  
i t y .  The out-of-phase component, when corrected f o r  the ta re  or wind-off 
damping, gave a measure of the aerodynamic damping. A description of 
the osc i l la t ion  mechanism, %he technique of taking measurements, and 
data-reduction procedures are given i n  references 3 and 4. 

The osc i l la t ing  balance and models were mounted on a sting-support 
Cen- s t r u t  which is  capable of an angle-of-attack range of -bo t o  l4O. 

t e r  of rotat ion of the support strut was about 2 f e e t  behind the model 
o sc i l l a t ion  axis. This location resulted i n  a s l igh t  displacement of 

varied. 

?.I 

# the model center from the tunnel center l i ne  as the angle of a t tack w a s  

Wind tunnel.- The t e s t s  were made i n  the Langley 8-foot transonic 
pressure tunnel. 
i n  the upper and lower w a l l s  allowing continuous operation through the 
transonic speed range with negligible choking and blockage effects .  

This tunnel has a rectangular t e s t  section with s l o t s  

TESTS 

The t e s t s  were made a t  Mach numbers from 0.30 t o  .1.20, a t  angles 
of a t tack  f r o m  0' t o  1 4 O ,  and at  osci l la t ion frequencies from 6 t o  
15 cycles per second which gives a range of reduced frequency param- 
e t e r  k from 0.0208 t o  0.1849. The amplitude of forced osc i l la t ion  i n  
pi tch or yaw w a s  2O. Tunnel stagnation temperature was maintained at  
122O F and, f o r  most of the tes t s ,  the tunnel stagnation pressure was 
one atmosphere. A limited amount of data w a s  obtained f o r  the basic 



6 

reentry configuration at  stagnation pressures 
> 4  

of 0.25, 0.5, and 
1.6 atmospheres, Reynolds number, based on heat-shield diameter, w a s  
varied from 0.55 X 10 t o  3.50 X 10 as shown i n  figure 2. For some 
t e s t s ,  transition-causing roughness i n  the form of sparsely distributed 
No. 36 carborundum grains w a s  applied t o  the heat-shield face i n  a 
1/8-inch-wide band on a c i r c l e  approximately 6 inches i n  diameter. The 
roughness s ize  w a s  estimated on the bas i s  of the c r i t e r i a  presented i n  
reference 5. 

6 6 

A l i s t  of the configurations and t e s t  conditions f o r  which da ta  
are presented i s  given i n  table  I. 
la ted  i n  p i tch  t o  determine Cmq + (& and 

the basic reentry configuration was  o sc i l l a t ed  i n  yaw t o  determine 

A l l  six configurations were osc i l -  
- k 2 h . .  In  addition, 

q 

2 Cnr - CnB COS a and Cn COS u + k Cn.. P r 

RESULTS AND DISCUSSION 

The t e s t  resu l t s  are presented i n  terms of the var ia t ions of the 
osc i l la tory  s t a b i l i t y  and damping parameters with angle of a t tack  f o r  
various reduced frequencies and Mach numbers. A l i s t  of f igures  pre- 
sented f o r  the various t e s t  conditions i s  i n  table  I. The sign conven- 
t ions  are such t h a t  negative values of the damping-in-pitch parameter 
hs + C% and the damping-in-yaw parameter Cnr - CnB cos a mean 

posit ive damping. Negative values of the osc i l l a to ry  longitudinal 
s t a b i l i t y  parameter \ - k2Cm. and posit ive values of the osc i l l a to ry  

direct ional  s t a b i l i t y  parameter Cn cos a + k2C indicate posit ive P "5 
osc i l la tory  s t a b i l i t y  . 

Dynamic Characterist ics 

Reentry configuration.- The basic reentry configuration had negli- 
gible or negative p i tch  damping at a l l  Mach numbers and angles of attack, 
except fo r  posit ive damping a t  
(See f ig .  3 . )  b w  osc i l la tory  longitudinal s t a b i l i t y  w a s  evident 
throughout except f o r  i n s t a b i l i t y  a t  angles of a t tack of about 4'. 
s t a t i c  

tendency a t  angles of a t tack near bo, although the s t a t i c  data  do not 
show an  ac tua l  change i n  sign. 
e f fec t  on e i t h e r  parameter. There w a s  no noticeable difference i n  

a = bo f o r  Mach numbers above 0.60. 

The 

Cm, f o r  the reentry configuration of reference 2 shows a similar 

Reduced frequency had no appreciable 
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r e su l t s  of tests with and without t rans i t ion  roughness. 
and 4. ) 

(See f igs .  3 

The e f f ec t s  of Reynolds number are shown i n  figure 5 f o r . t e s t s  a t  
tunnel stagnation pressures of 0.25, 0.50, 1.00, and 1.60 atmospheres 
f o r  Mach numbers of 0.60 and 1.20. The primary e f f ec t  of decreasing 
Reynolds number from the values obtained a t  a stagnation pressure of 
one atmosphere t o  the lowest t e s t  values appears t o  be an increase i n  
the e f f ec t  of reduced frequency on the osc i l la tory  longitudinal 
s t a b i l i t y .  

On the modified reentry configurations, the removal of the antenna 
and parachute canis ters  from the  basic reentry configuration showed an 
increase i n  the osc i l la tory  longitudinal s t a b i l i t y  and a decrease i n  
the damping i n  pi tch a t  4' angle of attack. 
parameters emphasize the importance of afterbody shape f o r  configura- 
t ions of t h i s  type. (See f igs .  3 and 6. ) The addition of a diverging 
conical flare t o  the basic reentry configuration caused detai led changes 
i n  the damping and osc i l la tory  s t a b i l i t y  but no s igni f icant  improvements 
i n  e i t h e r  parameter. (See f ig s .  3 and 7.) The use of a vented heat 
shield showed no par t icu lar  change i n  damping or osc i l l a to ry  s t a b i l i t y  
except f o r  a s m a l l  decrease i n  p i tch  damping near a = 4O. (See f ig s .  3 
and 8.) 

The e f f ec t s  upon these 

A general trend with angle of attack fo r  a l l  configurations w a s  
f o r  an increase (or decrease) i n  the damping i n  pi tch t o  be accompanied 
by a decrease (or increase) i n  the osc i l la tory  longitudinal s t ab i l i t y .  
This same trend i s  also shown i n  the data of reference 6. 

Comparison between pi tch and yaw osc i l l a t ion  data (see f igs .  3 
and 9 )  shows the same l e v e l  of damping and osc i l l a to ry  s t a b i l i t y  a t  
a = Oo 
i n  posit ive d 
of a t tack of 'p 'was reduced i n  magnitude during the yaw t e s t s  and 
occurred a t  an angle of a t tack of about 8'. 

which i s  t o  be expected f o r  a body of revolution. The increase 
@hg tha t  occurred during the p i tch  t e s t s  a t  an angle 

E x i t  configuration.- The basic ex i t  configuration had posit ive 
p i tch  damping (a  negative coeff ic ient)  and osc i l l a to ry  longitudinal 
i n s t a b i l i t y  (a posit ive coeff ic ient)  f o r  a l l  the t e s t  Mach numbers and 
angles of attack. (See f ig .  10.) There w a s  no appreciable e f f ec t  of 
reduced frequency. 

Escape configuration.- The limited data f o r  the escape configura- 
t i on  i n  f igure 11 indicate t h a t  fo r  all Mach numbers the model had 
posi t ive p i tch  damping a t  a l l  angles of a t tack and osc i l la tory  longi- 
tud ina l  s t a b i l i t y  except a t  angles of a t tack higher than about 100. 
The s t a t i c  da ta  f o r  the escape configuration of reference 2 show the 
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same resul ts .  Reduced frequency e f f ec t s  on both parameters were 
negligible. 

Comparison of Osci l la tory and S t a t i c  S t a b i l i t y  Results 

The s t a t i c  s t a b i l i t y  der ivat ive % which w a s  obtained from 

reference 2 i s  compared with the osc i l l a to ry  longitudinal s t a b i l i t y  
parameter 

thought of as the osc i l l a to ry  s t a b i l i t y  parameter at  a reduced fre- 
quency k of 0. The s t a t i c  and osc i l l a to ry  longitudinal s t a b i l i t y  
parameters are  i n  good agreement showing t h a t  there  are no appreciable 
frequency e f f ec t s  f o r  these tes t  conditions. (See f i g .  12.) 

- k2Cm. i n  f igure 12 f o r  a = 0'. S t a t i c  C may be 
c% 9 

SUMMARY OF RESULTS 

The transonic damping and osc i l l a to ry  s t a b i l i t y  charac te r i s t ics  
of the reentry, ex i t ,  escape, and three modified reentry configurations 
of a 1/9-scale model of the Mercury capsule have been investigated by 
using a forced-osci l la t ion technique. Tests were made a t  Mach numbers 
from 0.30 t o  1.20, Reynolds numbers from 0.55 x 10 6 t o  3.50 x 10 6 , 
reduced frequency parameter from 0.0208 t o  0.1849, and a t  angles of 
a t tack from 0' t o  14O. 

The r e su l t s  are summarized as follows: 

1. The reentry configuration had marginal or negative damping i n  
p i tch  except f o r  posi t ive damping near a = 4' above M = 0.60 and 
had s l igh t  posit ive osc i l l a to ry  longi tudinal  s t a b i l i t y  throughout except 
near a = 4'. The damping i n  p i tch  and the osc i l l a to ry  longitudinal 
s t a b i l i t y  were generally independent of reduced frequency and model 
surface conditions f o r  Reynolds numbers above about 1.10 X lo6. 

2. Addition of a diverging conical flare o r  a vented heat sh ie ld  
t o  the basic reentry body caused de ta i led  changes i n  p i tch  damping and 
osc i l la tory  longitudinal s t a b i l i t y  but did not improve e i t h e r  parameter 
suf f ic ien t ly  t o  warrant consideration. Removal of the antenna and 
parachute canis ters  showed an appreciable e f f ec t  of afterbody on 
damping. 

3. The basic  e x i t  configuration had posi t ive damping i n  p i tch  but U 

negative osc i l l a to ry  longitudinal s t a b i l i t y  ( i n s t a b i l i t y )  a t  a l l  angles 
of attack and Mach numbers. 

Y 
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4. The basic escape configuration had positive damping at  all 
angles of attack and Mach numbers and had positive osc i l la tory  longi- 
tudinal  s t a b i l i t y  f o r  a l l  Mach numbers at  angles of attack below 
about 10'. 

9 

5. A general trend with angle of attack w a s  fo r  increases (or  
decreases) i n  the damping i n  pi tch t o  be accompanied by decreases (or  
increases) i n  the osci l la tory longitudinal s t a b i l i t y  f o r  a l l  configura- 
t ions of the investigation. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., May 17, 1961. 
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Figure 2.- Variation of Reynolds number with Mach number for 
t e s t  stagnation pressures. 
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Figure 12.- Comparison of static and dynamic pitching coefficients with 
Mach number for the exit, reentry, and escape configuration at a = 0'. 
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